

Drug discovery for RYR-1 myopathies using zebrafish models

Alan H. Beggs, PhD
Boston Children's Hospital
Harvard Medical School
July 23, 2016

RYR-1 International Family Conference

JULY 22-24TH, 2016, BALTIMORE, MARYLAND, USA, AT THE HILTON BALTIMORE BWI AIRPORT HOTEL

Boston Congenital Myopathy Study

- Established 1992
- Identify and enroll patients and their families from around the world
- Includes >2700 individuals
 - almost 1000 with congenital myopathy
- Collect clinical records, DNA and muscle specimens
- Discover new myopathy genes, understand how mutations cause weakness, develop treatments

Why use zebrafish as a disease model?

✓ Small vertebrate organism

✓ Easy husbandry

Why use zebrafish as a disease model?

✓ High spawning productivity

✓ Rapid *ex utero* development

Watch them grow!

Proteins and structures are highly conserved between human and zebrafish muscle

Fully differentiated slow & fast muscle fibers by 48 hours post fertilization

Similar dystrophin-glycoprotein complex & sarcomeric structure

Disrupting gene expression in zebrafish embryos

Injection at the one-cell stage

Transiently reduce expression

Create stable genetic knockouts

Zebrafish *relatively relaxed* mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease

Hiromi Hirata^{1,2,†}, Takaki Watanabe¹, Jun Hatakeyama³, Shawn M. Sprague², Louis Saint-Amant^{2,*}, Ayako Nagashima², Wilson W. Cui², Weibin Zhou² and John Y. Kuwada²

Relatively relaxed fish have a DNA insertion resulting in aberrant splicing of fast ryr1b mRNA and loss of protein

Zebrafish *ryr1b* mutants

Diminished touch-evoked swimming in *ryr1b* mutants

Numerical rating system for zebrafish mobility

Chemical screens in zebrafish

Chemical screening strategy

Prestwick2 Collection

- 1120 off-patent compounds that have been selected for structural diversity, collective coverage of multiple therapeutic areas, and known safety and bioavailability in humans.
- 100% approved drugs. Over 85% of the Prestwick compounds are currently marketed.

Results by the numbers

Identifying candidates in the secondary screen

Candidate compounds

Vitality Score	Chemical Name	Formula	MW	Mechanism of Action
58.0	Pargyline hydrochloride *	C ₁₁ H ₁₄ CIN	195.69	Irreversible monoamine oxidase (MAO) inhibitor
57.0	Sulfasalazine	C ₁₈ H ₁₄ N ₄ O ₅ S	398.39	NF-KB inhibitor; anti-inflammatory
55.5	Metolazone **	C ₁₆ H ₁₆ CIN ₃ O ₃ S	365.83	Sodium-chloride channel inhibitor
55.0	Zimelidine dihydrochloride monohydrate **	C ₁₆ H ₂₁ BrCl ₂ N ₂ O	408.16	Selective serotonin reuptake inhibitor
54.0	Miconazole ***	C ₁₈ H ₁₄ Cl ₄ N ₂ O	416.13	Anti-fungal agent
54.0	Ticlopidine hydrochloride ***	C ₁₄ H ₁₅ Cl ₂ NS	300.25	Inhibitor of platelet aggregation
53.5	lohexol	$C_{19}H_{26}I_3N_3O_9$	821.14	Low-osmolality contrast agent
52.5	Benoxinate hydrochloride ***	C ₁₇ H ₂₉ CIN ₂ O ₃	344.88	Surface anaesthetic
52.0	Ketoprofen	C ₁₆ H ₁₄ O ₃	254.28	Cyclooxygenase inhibitor; anti-inflammatory
52.0	Nifuroxazide	C ₁₂ H ₉ N ₃ O ₅	275.22	JAK/STAT signaling inhibitor
52.0	Nimodipine	C ₂₁ H ₂₆ N ₂ O ₇	418.44	Dihydropyridine calcium channel blocker
52.0	Tranylcypromine hydrochloride *	C ₉ H ₁₂ CIN	169.65	Irreversible MAO inhibitor

JAK-STAT inhibition improves swimming behaviors

JAK-STAT inhibition (10 ug/ml NIF) corrects mild morphological defects

Inhibiting JAK-STAT as a therapeutic approach for *RYR1*-related congenital myopathy

JAK-STAT inhibitors show dose-response

3 = wild-type swimming 2 = moderate swimming 1 = poor swimming at 5 dpf

Increased caffeine-induced IL-6 release by myotubes with *RYR1* mutations

Normal

MH RYR1 mutant (non-CM)

CCD RYR1 mutants (CM)

Increased *stat3* expression and sensitivity to NIF treatment in 5dpf *ryr1b* mutants

qrtPCR of stat3 mRNA

Potential mechanism of JAK-STAT in skeletal muscle

Potential mechanism of JAK-STAT in skeletal muscle

Aging/diseased

